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ABSTRACT

3D hand pose estimation from single RGB images is challenging because self-occlusion and the
absence of depth make it difficult to regress relative depth between hand joints and to produce biome-
chanically feasible hand poses. To address these issues, we propose a Prior-knowledge Aware and
Mesh-Supervised Network (PAMSNet) to integrate the knowledge implied in the hand’s articulated
structure and that contained in hand meshes. We explore and interpret the knowledge from a novel
perspective inspired by cognitive psychology and forge it into implicit and explicit categories. The
former is difficult to be formulated and should be learned from data while the latter can be embedded in
loss functions. We estimate 3D poses by fusing the hand’s 2D pose and texture features. Hand meshes
produced by a parameterized hand model are employed as a regularizer to optimize feature extraction.
Furthermore, an extended 128-joint hand skeleton model is proposed to generate denser heatmaps to
provide approximately mask-aware spatial attention. Experimental results show that our method is
competitive with the state-of-the-art on two public datasets and is superior in generalization ability,
with a more efficient architecture. Finally, we apply 3D hand poses to control the moving direction
and orientation of the robot end-effector (EE).

1. Introduction
The hand, which plays an important role in human com-

munication, is widely used in human-computer interaction.
Hand poses, represented by the positions of hand joints, can
be utilized to express various intentions. As a result, hand
pose estimation methods, especially based on vision, have
witnessed significant progress in recent years. Particularly,
the input of these methods has evolved from depth [1, 2, 3]
to RGB images owing to the availability of RGB cameras.
However, due to a lack of depth information, estimating 3D
hand poses from single RGB images is more challenging
than from depth ones. To address this problem, some ap-
proaches resort to images taken from multi-view [4], while
some other methods take 3D hand pose estimation as a by-
product of the hand shape reconstruction task [5]. In addi-
tion, to prevent producing infeasible 3D hand poses as much
as possible, some geometric or biomechanical constraints
are proposed [6, 7].

The methods mentioned above have significantly im-
proved the performance of 3D hand pose estimation. How-
ever, a multi-view sensing system needs multiple cameras
placed at different angles, which could damage the conve-
nience and naturalness in some applications, e.g., human-
machine interaction. Deriving 3D hand poses from hand
shape reconstruction tasks means we have to reconstruct the
hand shape and use it during training and inference stages,
which might be heavy for hand pose estimation. On the other
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hand, the knowledge implied in the articulated structure of
the hand, which could be beneficial to producemore accurate
and feasible 3D hand poses, is still worth further exploration.
Moreover, it is necessary and feasible to integrate various
kinds of prior knowledge in an effective and efficient way.

The hand skeleton is of an articulated structure, imply-
ing some interesting prior knowledge. For example, if we
decompose a 3D hand pose into a 2D hand pose and the
relative depth between hand joints, we will get that, for any
two adjacent hand joints, the larger the distance between
them in the image plane, the smaller the distance in depth.
It means regressing relative depth between hand joints from
their 2D poses is possible. Generally, the prior knowledge
can be forged into implicit and explicit categories. The
former includes the part that varies from person to person
and is hard to be formulated, while the latter contains some
biomechanical constraints that apply to all ordinary people.

Although 2D coordinates of hand joints are requisites
for 3D hand pose estimation, it is insufficient to accurately
regress relative depth between hand joints using only them,
since there are multiple 3D hand poses that can project to the
same 2D pose. In this case, hand texture features could pro-
vide complementary information to deal with ambiguities.
That is to say, it is necessary to combine 2D poses and texture
features of the hand together. In addition, heat maps of 2D
hand poses can provide pose- and even mask-aware spatial
attention for extracting hand texture features of interest.

Hand meshes generated by MANO [8], a type of pa-
rameterized hand model, contain a higher magnitude of
information than hand poses and are always biomechanically
feasible. Thus, they can be employed as a higher level of su-
pervision to optimize feature extraction for pose estimation.

Based on these ideas, we propose a Prior-knowledge
Aware and Mesh-Supervised Network (PAMSNet) and de-
sign a set of loss functions related to prior knowledge and
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Figure 1: Architecture of the proposed Prior-knowledge Aware and Mesh-Supervised Network (PAMSNet). It mainly comprises
a stacked hourglass network as the backbone, a relative depth regressor, and a MANO layer (in the dotted-line bounding box).
The MANO layer will be removed when doing inference.

meshes, so that the network can be trained in an end-to-
end fashion. The architecture of our proposed PAMSNet is
shown in Fig. 1. It’s worth noting that the mesh supervision
mechanism can be removed when the network is put into
practice so that the storage space and inference time can be
reduced.

We test our method on the STB [9], RHD [10], and
FreiHAND [11] datasets. We also test it on a custom hand
gesture dataset for cross-dataset evaluation. We compare
our method with the state-of-the-art in terms of evaluation
accuracy and generalization ability.

Finally, we extract the pointing direction of the index
finger and the orientation of the hand from 3D hand poses,
and apply them to indicate the moving direction and the ori-
entation of the robot end-effector, respectively, in a natural
and efficient teleoperation manner.

Themain contributions of this article can be summarized
as follows.

∙ We explore and interpret the prior knowledge implied in
the hand skeleton from a novel perspective inspired by
cognitive psychology and propose to estimate 3D hand
poses by fusing the 2D pose and texture features of the
hand. We divide the prior knowledge into two categories;
the first one is learned from data and the second can be
embedded in loss functions.

∙ We extend the canonical 21-joint hand model to a 128-
joint one and use corresponding denser 2D heatmaps as an
approximately mask-aware spatial attention mechanism to
help extract texture features.

∙ We utilize hand meshes as a higher level of supervision to
optimize feature extraction without paying a price during
network inference.

2. Related work
2.1. Hand pose and shape estimation from RGB

images
Deep neural networks, being able to learn representa-

tions from data, are widely used for hand pose estimation

[10, 12, 13, 14, 15]. Zimmermann et al. [10] propose a net-
work to segment hand, extract 2D joint positions, and derive
3D hand poses, respectively. Spurr et al. [12] construct a
unified latent space using multiple modalities to encourage
similar poses with different modalities to be embedded close
to each other. Iqbal et al. [13] propose 2.5D heatmaps for
each key point for depth prediction. Intuitively, a straightfor-
ward way to mitigate depth ambiguity is using images taken
from multiple views [4, 16]. In addition to pose annotations,
Cai et al. [17] employ depth images as a weak supervision.
As the hand skeleton is of a graph-like structure, some works
[18, 19] construct the hand skeleton as an undirected graph.

Most hand shape estimation methods are based on
MANO [8], a parameterized hand model. Boukhayma et
al. [20] present an end-to-end method for hand shape and
pose estimation from single RGB images in the wild. Zhang
et al. [5] use a multi-task learning framework to estimate
the 2D/3D hand pose, hand mask, and MANO hand mesh.
More recently, personalized hand shape reconstruction from
a single RGB image [21] or a short RGB video [22] is pro-
posed to incorporate identity information. More challenging
scenarios related to hand-object [23] and two-hand [24]
interaction are attracting considerable attention. Different
from themethods based onMANO, Ge et al. [25] propose an
end-to-end trainable hand mesh generation approach using
Graph CNN. These methods generally obtain hand poses as
by-products of their shapes. In contrast, we employ hand
shapes as a higher level of supervision for pose estimation.

2.2. Hand shape and pose estimation using
geometric and biomechanical constraints

To produce biomechanically feasible hand poses, some
works [6, 7, 26] adopt geometric or biomechanical con-
straints. Zhang et al. [6] introduce two geometric rules
to restrict the joint position and bending direction of the
finger. In [26], priors consist of the lower bound of the
variational auto-encoder (VAE) as well as the bone lengths
and self-occlusions of the hand. Spurr et al. [7] adopt palmar
structure, bone lengths, and joint angles as biomechanical
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Figure 2: Illustration of the prior knowledge implied in the
articulated structure of the hand. For the same finger, a smaller
length in the image plane UV generally means a larger depth
margin between joints (left). Meanwhile, there exist at least
two 3D poses corresponding to the same 2D pose (right).

constraints. Both [26] and [7] use predefined ranges to
restrict the bone’s length; however, it is hard to accurately
determine these ranges due to the diversity of hand bones.
In contrast, we simply assume that the bone near the wrist is
longer than the bone near the tip, giving the network more
room to learn from data and fine-tune itself.

3. Methodology
3.1. Prior knowledge

The hand skeleton forms an articulated structure, the
priors of which could provide opportunities for us to improve
evaluation results. Fig. 2 presents a visualization of the prior
geometric knowledge implied in the hand skeleton. Taking
the bone of a stretched finger (denoted as vector ab) as an
example, we can infer that a shorter projection of the finger
on the image plane (UV) usually means a longer projection
on the depth axis. Specifically, in the left of Fig. 2, the
finger ab is presented in two different orientations, denoted
as ab1 and ab2, i.e., |ab1| = |ab2|. a′b′1 and a

′b′2 are their
projections on the image plane and a′′b′′1 and a′′b′′2 are their
projections on the depth axis. It can be observed that |a′b′1| <
|a′b′2| and |a′′b′′1 | > |a′′b′′2 |. From this, we can further get a
rule that if |ab1| = |ab2|, then

|a′b′1| > |a′b′2| ⇔ |a′′b′′1 | < |a′′b′′2 |, (1)

and

|a′b′1| < |a′b′2| ⇔ |a′′b′′1 | > |a′′b′′2 |. (2)

This rule suggests that it is possible to infer relative depth
between hand joints from their 2D positions. Considering
there are some differences between the hand skeletons of
individuals, it is necessary to learn a mapping between 2D
coordinates and relative depth of hand joints from data.
Unfortunately, however, at least two 3D poses can project
to the same 2D pose. As shown in the right of Fig. 2, two
poses (denoted as ab1 and ab2) formed by a finger bent
towards opposite directions have the same projection (a′b′)
on the image plane, which means we are unable to determine
whether a joint is in front or back of its adjacent joints.
Hence, additional information is needed to deal with this
problem. Inspired by the human cognitive psychology, it can
be realized that the two 3D poses that correspond to the

same 2D pose can probably make the hand render different
textures and show various effects with illuminations on
the skin. These differences could make human beings able
to distinguish between the two 3D poses. Based on these
observations, we propose to extract 2D poses and texture
features of the hand separately and combine them together
to infer 3D poses.

On the other hand, geometric constraints on the joint
position and the bending direction of an individual finger
and between multiple fingers could be beneficial to produce
biomechanically feasible poses. These constraints can be ap-
plied to all ordinary persons. As a result, the prior knowledge
can be categorized into two aspects; the first one is implic-
itly implied in the hand skeleton and can be learned from
data, while the second one can explicitly be defined as loss
functions. To integrate these two types of prior knowledge
appropriately, we use the deep neural network to learn a
mapping fp for implicit priors to regress relative depth d
between hand joints from their 2D coordinates J 2D. Taking
into account hand texture features Ft as complementary
information to 2D poses, we totally have

d = fp(J 2D;Ft), (3)

where “;” is the concatenation operation.

3.2. Mesh supervision
MANO [8] is a popular parameterized hand model. It is

mathematically defined as

M(�, �) = W (TP (�, �), J (�), �,), (4)

TP (�, �) = T + BS (�) + BP (�), (5)

where W is a skinning function applied to hand mesh with
shape TP , joint locations J defining a kinematic tree, pose
� ∈ ℝ45, shape � ∈ ℝ10, and blend weights  ; T is the
template mesh, BS (�) and BP (�) represent offsets from the
template. To obtain MANO hand meshes, the shape � and
pose � parameters should be provided. Different from hand
poses consisting of joint positions, the pose parameter of
MANO is represented by the rotation angle between adjacent
joints.

As a parameterized hand model, MANO can always
produce feasible hand shapes and poses. However, when
under difficult conditions, MANO will probably have to
sacrifice accuracy for feasibility. Therefore, we propose to
estimate MANO meshes and hand poses in parallel, which
could encourage the network to learn representations for
feasible poses, and thus complement direct pose estimation
to achieve a better trade-off between accuracy and feasibility.

In this work, we adopt the hand mesh generated by
a differentiable MANO layer [27] and mesh-related loss
functions as a regularizer to optimize feature extraction for
pose estimation. The pose and shape parameters of MANO
are learned from the combination of 2D poses and texture
features of the hand, respectively. The MANO layer is not
needed when the network is put into practice so that the time
and space complexities of it can be reduced.
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Figure 3: Illustrations of a hand image (a) and its canonical
21-joint heatmap (b) and interpolated 128-joint heatmap (c).

3.3. Extended 128-joint hand model
As described earlier, we extract 2D poses and texture fea-

tures of the hand separately and use the latter to complement
the former to estimate 3D poses. In turn, we also propose
to use hand joint heatmaps as an intuitive spatial attention
mechanism to help extract hand texture features of interest.

In [15], the 21-joint heatmaps followed by convolutional
and pooling layers are used as spatial attention to separate
the hands for two-hand pose estimation. However, 21-joint
heatmaps can only provide relatively sparse pose-aware at-
tention. In contrast, heatmap attention is integrated into our
proposed network without post-process layers. Furthermore,
we interpolate the canonical 21-joint hand model to a 128-
joint one (see Fig. 3), yielding an extended heatmap, which
can provide approximately mask-aware attention without
hand shape or mask annotations. It is worth noting that the
interpolation can be performed automatically by a computer
program (see Algorithm 1) and the network’s complexity
only increases slightly (less than 1% in model size).

We sum 128 joint heatmaps to get a single heatmap
and sum texture feature maps to get a single feature map,
respectively. These two maps are multiplied to get a new
feature map. This process can be formulated as

Fnew = ΣJj=1Hj ⊗ ΣNi=1Fi, (6)

where J and N are the numbers of hand joints and texture
feature maps, Hj and Fi are heat map and texture feature
map, respectively, and ⊗ denotes element-wise multiplica-
tion.

3.4. Network architecture
The architecture of our proposed deep neural network is

shown in Fig. 1. It consists of (i) a two-stacked hourglass
network as the backbone to produce hand joint heatmaps
and texture feature maps, (ii) a multilayer perceptron (MLP)
that regresses relative depth between hand joints from 2D
joint coordinates and hand texture features, (iii) an MLP that
generatesMANOpose parameters from 2D joint coordinates
and hand texture features, (iv) anMLP that producesMANO
shape parameters from 2D joint coordinates and hand texture
features, and (v) a differentiable MANO layer that generates
hand meshes from pose and shape parameters.

Given an input image I ∈ ℝ256×256×3, the stacked hour
glass network [28] fSH extract features F = (Fℎm;Ft) =

Algorithm 1 Interpolate joint positions
Input: uv /* 21 joint positions */
Output: uv_ext /* 128 joint positions */
Output: joint_indices /* new indices of original joints in
the 128-joint model */
arr_n← [4, 5, 3, 2, 6, 7, 3, 2, 10, 7, 3, 2, 6, 7, 3, 2, 6, 7, 3, 2]
/* Interpolate positions within the same finger */
for i ← 1 to len(arr_n) do
n← arr_n[i]
p = FindParentJoint(i)
/* Insert n new joints between joints i and p */
InsertJoint(i, p, n)

end for
/* Get new indices of all five MCP joints */
mi = GetNewMCPIndices()
/* Interpolate positions between fingers in the palm */
src_dest_n← [[mi[0], mi[1], 4], [mi[1], mi[2], 1],

[mi[2], mi[3], 1], [mi[3], mi[4], 1],
[mi[0] − 1, mi[1] − 3, 3], [mi[0] − 3, mi[1] − 6, 2],
[mi[0] − 6, mi[1] − 6, 1], [mi[1] − 3, mi[2] − 3, 1],
[mi[2] − 3, mi[3] − 3, 1], [mi[3] − 3, mi[4] − 3, 1]]

for i ← 1 to len(src_dest_n) do
s, d, n ← src_dest_n[i]
/* Insert n new joints between joints s and d */
InsertJoint(s, d, n)

end for

fSH (I), where Fℎm ∈ ℝ64×64×128 are the interpolated 128-
joint heatmaps and Ft ∈ ℝ64×64×512 are hand texture fea-
tures, respectively. Heatmaps are then summed to form a sin-
gle heatmap. Subsequently, the canonical 21-joint heatmaps
are extracted from the 128-joint heatmaps, and flattened to
a heatmap vector vℎm ∈ ℝ4096. Hand texture features are
first multiplied by the 128-joint heatmap for spatial attention
and converted to a texture vector vt ∈ ℝ4096. An MLP
f3D, which consists of four fully-connected layers, takes
the concatenation of vℎm and vt as input and outputs 3D
coordinates of hand joints v3D = f3D(vℎm, vt), where v3D ∈
ℝ63 is the x, y, and z coordinates. Meanwhile, 2D positions
of hand joints in the image plane are obtained from heatmaps
using (u, v) = argmax(u,v)H(u, v), whereH denotes the 21-
joint heatmap, and u, v is the pixel position inH .We here use
(u, v) rather than (x, y) to integrate with z (also relative depth
d) to generate final 3D hand joint positions. Accordingly,
prior biomechanical constraints will be imposed on (u, v, d).
The reason that, in addition to (u, v), we evaluate (x, y)
simultaneously is to preserve the proportion of (x, y) to z
and then replace (x, y)with (u, v) proportionally in scenarios
where the scale of the hand is unknown. We can recover the
scale of depth d by

Sd = SuvSz∕Sxy, (7)

where Sd , Suv, Sxy, and Sz are the scales of d, uv, xy, and
z, respectively.

The premise of using the MANO layer to generate hand
meshes is obtaining the pose (� ∈ ℝ45) and shape (� ∈ ℝ10)
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parameters of MANO. We use an MLP f� consisting of
four fully-connected layers to generate pose parameters from
the concatenation of the 2D pose and texture features of
the hand, i.e., � = f�(vℎm, vt). Similarly, another MLP f�
containing four fully-connected layers is employed to extract
shape parameters from the hand’s 2D pose and texture
features, i.e., � = f�(vℎm, vt). A differentiable MANO layer
fM is then utilized to produce hand meshes  ∈ ℝN×3

from the pose and shape parameters, i.e.,  = fM (�, �),
where N is the number of vertices in the hand mesh and
N = 778 for the MANO model.

3.5. Loss functions
We adopt a set of loss functions to supervise different

parts of the network (see Fig. 1). They can be separated
into (i) pose-related, (ii) prior-related, and (iii) mesh-related
groups.

Pose-related loss: This part consists of 2D heatmap loss
and 3D pose loss. The ground truth heatmap is defined as
a 2D Gaussian with a standard deviation of 1 px centered
on the ground truth 2D joint location. 2D heatmap loss is
defined as:

ℎm = ΣJj=1‖Ĥj −Hj‖
2
2, (8)

where Ĥj ∈ ℝ64×64 and Hj ∈ ℝ64×64 denote the esti-
mated and ground-truth heatmaps, respectively. This loss is
applied to the canonical 21-joint and the extended 128-joint
heatmaps. 3D pose loss is defined as:

jt = ΣJj=1‖p̂
3D
j − p3Dj ‖

2
2, (9)

where p̂3Dj ∈ ℝ3 and p3Dj ∈ ℝ3 are the estimated and
ground-truth 3D joint positions, respectively.

Prior-related loss: Prior geometric constraints are intro-
duced to encourage the network to produce as feasible poses
as possible. We denote the wrist and a finger’s joints (from
the MCP joint to the tip) as r, a, b, c, and d, respectively,
and divide them into three segments: (r, a, b), (a, b, c), and
(b, c, d). First, these five joints should be approximately in
the same plane. Accordingly, the loss function is formulated
as

p = ⟨ra × ab, bc⟩ + ⟨ab × bc, cd⟩, (10)

where ra, ab, bc, and cd represent the vector from joint r to
a, from a to b, from b to c, and from c to d, respectively; “⟨⟩”
and “×” are inner and cross product operators of two vectors.

Second, the three segments should bend in the same
direction. We at first define the bending degree of a finger’s
segment, for example, (a, b, c), as

Dabc = (|ab| + |bc|)∕|ac|. (11)

The corresponding loss function of segment, e.g. (a, b, c) can
be defined as

d =

{

Dabc − 1 ⟨ra × ab, ab × bc⟩ < 0
0 otherwise.

(12)

Third, the length of a finger’s bones should follow the
rule that the bone near the wrist is longer than the one near
the tip. The loss function is defined as

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

len =
1
2
[(|�rab| − �rab) + (|�abc| − �abc)

+ (|�bcd| − �bcd)],
�rab = |ra| − |ab|,
�abc = |ab| − |bc|,
�bcd = |bc| − |cd|.

(13)

As a result, the prior loss in total is

prior = p + d + len. (14)

Mesh-related loss: In works [29, 25] that adopt a non-
MANO hand model, the mesh loss consists of vertex loss
v, normal loss n, and edge loss e, used to restrict 3D po-
sitions of mesh vertices, ensure surface normal consistency,
and keep edge length, respectively. In this work, since we
adopt the MANO model, which is self-consistent between
vertices, surfaces, and edges, vertex loss is sufficient to
ensure hand mesh consistency. Therefore, the mesh loss is
defined as

mesℎ = v. (15)

The overall loss function of our method is

total = �ℎmℎm+�jtjt+�priorprior+�mesℎmesℎ, (16)

where �ℎm, �jt, �prior, and �mesℎ are hyperparameters. In our
experiment, we set �ℎm = 5, �jt = 1, �prior = 0.1, and
�mesℎ = 0.1, respectively.

3.6. Implementation
Dataset: The Rendered Hand Dataset (RHD) [10] and

the Stereo Hand Pose Tracking Benchmark (STB) [9] are
two widely used datasets in 3D hand pose estimation. The
former is a synthetic dataset while the latter is a real one.
These two datasets both provide 3D hand pose annotations.
InterHand2.6M [30] and FreiHAND [11] further offer hand
shape annotations. InterHand2.6M [30] is a large-scale real
RGB-based 3D hand pose and shape dataset, including both
single and interacting hand sequences under various poses
from multiple subjects. FreiHAND [11] additionally con-
tains hand-object interaction scenarios.

For the STB dataset, we select images with background
3 as evaluation data and images with other backgrounds as
training data. The RHD dataset is split into training and
evaluation parts according to [10]. Although the original
FreiHAND dataset contains a sub-dataset for evaluation,
it lacks pose and mesh annotations. Therefore, we divide
the original training dataset into four parts, each including
32560 images, and take the second part as real train data,
the first 3000 images of the third part as real evaluation data.
All hand images are cropped and resized to 256×256 pixels.

Data preprocess: Similar to [10], we estimate a scale-
invariant and root-relative 3D hand pose. We select the wrist

D. Sun et al. : Preprint submitted to Elsevier Page 5 of 10



Robot programming framework

20 25 30 35 40 45 50
Error Thresholds (mm)

0.980

0.985

0.990

0.995

1.000

3D
 P

CK

STB Dataset

Ours (AUC=0.999)
Ge(CVPR2019) (AUC=0.998)
Guo(TCSVT2021) (AUC=0.998)
Cai(TPAMI2020) (AUC=0.996)

(a)

20 25 30 35 40 45 50
Error Thresholds (mm)

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

3D
 P

CK

RHD Dataset

Ours (AUC=0.95)
Guo(TCSVT2021) (AUC=0.934)
Ge(CVPR2019) (AUC=0.919)
Cai(PAMI2020) (AUC=0.917)
Spurr(CVPR2018) (AUC=0.849)

(b)

0 10 20 30 40 50
Error Thresholds (mm)

0.0

0.2

0.4

0.6

0.8

1.0

3D
 P

CK

FreiHand Dataset

Full (AUC=0.718)
Full w/o prior (AUC=0.696)
Full w/o texture (AUC=0.682)
Full w/o 2D pose (AUC=0.626)

(c)

0 10 20 30 40 50
Error Thresholds (mm)

0.0

0.2

0.4

0.6

0.8

1.0

3D
 P

CK

FreiHand Dataset

(B+M+EHA) (AUC=0.718)
(B+M+HA) (AUC=0.685)
(B+M) (AUC=0.671)
(B) (AUC=0.650)

(d)

Figure 4: (1) Comparisons with other methods on the STB (a) and RHD (b) datasets. (2) Ablation study results on the FreiHand
dataset (c)(d).

r as the root joint and the distance between the wrist and
the MCP of the middle finger as the scale s of the hand.
The relative and normalized 3D coordinates of the joints are
given by

J̃i = (Ji − Jr)∕s, (17)

where Ji ∈ ℝ3 is the original coordinates of hand joints. The
mesh is also normalized in a similar way. We select vertices
with the index of 33 and 370 as the wrist and the MCP of the
middle finger, respectively. The relative and normalized 3D
coordinates of mesh vertices are given by

ṽi = (vi − vr)∕s, (18)

where vi ∈ ℝ3 is the original coordinates of mesh vertices.
Data augmentation: For images in all training datasets,

we perform scaling (0.9 - 1.1) and rotation with an angle
in {0◦, 90◦, 180◦, 270◦}. The 2D and 3D coordinates of
hand joints and mesh vertices are also rotated accordingly.
Moreover, we randomly change an image by color-jittering
with the following configurations: brightness (0.9 - 1.1),
contrast (0.85 - 1.15), saturation (0.9 - 1.1), hue (0.9 - 1.1),
and apply randomly chosen Gaussian blur on images.

Training: Our hand pose estimation method is im-
plemented using the PyTorch framework. The network is
trained using Adam optimizer with a batch size of 16 on a

single GTX2080Ti GPU. The learning rate warmup strategy
[31] is used in the first epoch to stabilize the training process.
To train the neural network efficiently, we divide it into three
main parts and train it in a gradually extended manner. At
first, we train the two-stacked hourglass subnetwork using
the heatmap loss with a learning rate of 0.001. We then
include the 3D coordinate regressor using the 3D pose and
prior-related loss with a learning rate of 0.0003. Finally, we
train the whole network using all loss items with a learning
rate of 0.0001.

4. Experiments
We evaluate our method on the STB, RHD, and Frei-

HAND datasets as well as a custom hand gesture dataset.
Similar to [25], we report evaluation results with the fol-
lowing metrics: (i) 3D PCK: the percentage of correct key
points of which the Euclidean error distance is below a
threshold; (ii) AUC: the area under the 3D PCK curve; and
(iii) EPE: the end position error(mm) between the predicted
and ground-truth 3D hand pose after root joint alignment.

4.1. Comparison with other methods
First, we compare our method with methods [25, 18, 17]

on the STB dataset. In work [25], the network is trained for
hand shape reconstruction supervised by non-parameterized
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Figure 5: Qualitative comparison on a custom hand gesture dataset between method [25] (top) and ours (bottom). The thumb,
index, middle, ring, and little fingers should be colored blue, green, red, cyan, and magenta, respectively.
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Figure 6: 3D hand pose estimation results of the pointing direction of the index finger (first row) and the orientation of the hand
(second row). There are four images in each sub-figure; the bottom-right one displays the hand image with 2D pose annotation;
the top-left, top-right, and bottom-left ones show the front-view, left-view, and top-view of the 3D hand pose, respectively. The
thumb, index, middle, ring, and little fingers are colored blue, green, red, cyan, and magenta, respectively.

hand meshes, and fine-tuned on the STB dataset. Accord-
ingly, we train our network on the InterHand dataset with
mesh supervision followed by fine-tuning with the STB
dataset without mesh supervision since it does not provide
mesh annotations. Results are shown in Fig. 4(a).

Second, we compare our method with methods [25, 12,
18, 17] on the RHD dataset. Similarly, our network is trained
on the InterHand dataset with mesh supervision and fine-
tuned with the RHD dataset without mesh supervision since
it does not provide mesh annotations. Results are shown in
Fig. 4(b).

The cross-dataset generalization ability is more impor-
tant for a method when put into practice. We qualitatively
compare our method with method [25] in 2D hand pose
estimation on a hand image dataset originally built for hand
gesture classification. Some results are shown in Fig. 5. It can
be seen that our method is superior to [25] by a considerable
margin, especially in dealing with severe self-occlusion of
hand joints, varied backgrounds, and different illuminations.

We also compare the EPE betweenmethod [25] and ours,
shown in Table 2. The first and second rows are the results

obtained with fine-tuning. As method [25] does not publish
a model fine-tuned on the RHD dataset, we here omit the
result. The third row is the EPE of cross-dataset test on the
FreiHand dataset. These results indicate that our method is
superior to method [25] in both inner- and cross-dataset test.

We demonstrate the 3D hand pose estimation results
of our network, which is trained on the InterHand and
FreiHAND datasets with mesh supervision, from three main
views in Fig. 6. It indicates that our method can infer relative
depth and produce biomechanically feasible 3D hand poses
even under severe self-occlusion (Fig. 6(c), 6(f), 6(g) ) and
blur (Fig. 6(d), 6(e)).

Lastly, we compare the time and space complexities of
our method with different configurations and method [25],
shown in Table 1. It manifests that our proposed network is
more efficient than [25] in terms of storage space, parameter
count, and FLOPs at the inference stage.

4.2. Ablation study
In this work, we propose a framework that integrates 2D

poses and texture features of the hand to infer 3D poses. To
further improve the performance of the framework, we (i)
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Figure 7: Illustrations of 3D hand poses estimated with (upper)
and without (bottom) prior-related losses. It demonstrates the
effectiveness of prior geometric constraints, especially for a
single stretched finger.

Table 1
Comparisons of time and space complexities of models at the
training and inference stages

Model Size (MB) Params (M) FLOPs (G)

Ge et al.[25] 87.6 21.76 16.34
Ours (B) 85 17.34 13.69

Ours (B+M) 85 17.34 13.69
Ours (B+M+HA) 85 17.34 13.69
Ours (B+M+EHA) 85.3 17.42 14.03
Ours (B+M+EHA)* 120.5 25.84 14.07

B: Baseline; M: Mesh Supervision; HA: Heatmap Attention;
EHA: Extended Heatmap Attention. The model with superscript
* is in the training stage.

Table 2
Comparisons of EPE

Dataset Ge et al. [25] Ours

STB (fine-tuned) 14.04 5.30
RHD (fine-tuned) − 14.16

FreiHand 121.80 72.25

utilize hand joint heatmaps as a spatial attention mechanism
for hand texture feature extraction, (ii) interpolate the canon-
ical 21-joint hand model to a 128-joint one to get denser
heatmaps, and (iii) employ hand meshes as supervision to
optimize feature extraction.

To demonstrate the contributions of these strategies,
we evaluated our network with different configurations.
For clarity, we denote the simplest model as the baseline
(B), baseline with mesh supervision as “B+M”, baseline
with mesh supervision and 21-joint heatmap attention as

30

configuration

Hand image

Monocular 
RGB sensor

Object

XR

YR

ZR

XE

YE

ZE

XC

YC
ZC

Full image

Figure 8: A scene of operating the robot using the pointing
direction of the index finger. The operator’s hand image is
captured by a monocular RGB camera and cropped from
the center for 3D hand pose estimation. Three coordinate
systems are attached to the robotic base, EE, and the camera,
respectively.

“B+M+HA”, and baseline with mesh supervision and ex-
tended 128-joint heatmap attention as “B+M+EHA” which
is also denoted as the “Full” model. The network is trained
on the InterHand and FreiHAND datasets since they both
provide mesh annotations.

First, we evaluate the network’s performance without
using 2D poses and without using texture features of the
hand, respectively. Results are shown in Fig. 4(c), indicating
that (i) only using 2D hand poses can infer relatively accurate
3D poses and (ii) using hand texture features alone leads to
a considerable drop in performance.

The effects of mesh supervision, hand joint heatmap at-
tention and extended hand joint heatmap attention are shown
in Fig. 4(d). It can be seen that (i) mesh supervision improves
pose estimation since hand meshes can provide a higher
magnitude of information, (ii) hand joint heatmap attention
contributes to performance gains as joint position regres-
sion and feature map extraction can benefit each other, and
(iii) extended 128-joint heatmap further enhances pose es-
timation considerably because it can provide approximately
mask-aware attention. It can also be observed from Table 1
that (i) the 21-joint heatmap attention does not increase the
network’s complexity, (ii) the extended 128-joint heatmap
attention only increases the network’s complexity slightly,
and (iii) the removable mesh supervision only increases the
model’s complexity at the training stage.

We also analyze the effect of prior-related loss items both
quantitatively and qualitatively, shown in Fig. 4(c) and Fig.
7, respectively. It can be seen that prior geometric constraints
are beneficial to generating more accurate and feasible hand
poses.

As for mesh supervision, we tried three types of network
architecture: (i) estimate 3D hand poses and shapes in cas-
cade, (ii) extract the pose and shape parameters of MANO
by the same MLP in parallel with pose estimation, and (iii)
extract the parameters by twoMLPs, respectively, in parallel
with pose estimation. We find the second one is better than
the first one and the last one is the best.
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Figure 9: Illustration of the pointing direction of the index
finger (a) and the orientation of the hand (b) in the camera
coordinate system.
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Figure 10: Comparison of the robotic EE’s 3D trajectories
generated by using the pointing direction of the index finger
(solid line) with that produced by using the teaching board
(dotted line).

5. Robot Teleoperation
A typical application of hand poses for robot teleopera-

tion is mapping them to the robotic grasper to grasp objects
[32, 33]. In this work, we extend it to control the moving
direction and orientation of the robotic EE using the pointing
direction of the index finger (see Fig. 8) and the orientation
of the hand, respectively.

To extract the index finger’s pointing direction in the
camera coordinate system (XCYCZC ), we attach a vector
AB on it, as shown in Fig. 9(a); point A represents the
MCP joint of the finger, and point B the tip. We denote
the coordinate of point A as PA = (xA, yA, zA), B as
PB = (xB , yB , zB), and the unit vector parallel with AB as
s = AB∕|AB|.

Fig. 10 displays the robotic EE’s trajectories produced
by using the index finger (solid line) and that generated by
using the teaching board (dotted line). It is obvious that using
the index finger is not only more natural but can also reduce
the moving distance (0.202m vs. 0.315m) of the robotic EE.

To calculate the hand’s orientation, we attach a coordi-
nate systemXHYHZH to the hand based on the little finger’s
MCP joint (denoted as A), the middle finger’s TIP joint
(B), and the index finger’s MCP joint (C) (see Fig. 9(b)).
Subsequently, the roll angle � can be calculated by pro-
jecting vector ZH onto plane XCOYC , getting vector Z ′

H ,
and measuring the angle between YC and Z ′

H . Similarly,

the pitch angle � can be obtained by projecting ZH onto
YCOZC , getting Z

′′

H , and measuring the angle between YC
and Z ′′

H ; the yaw angle 
 can be obtained by projecting YH
ontoXCOZC , getting Y

′

H , and measuring the angle between
ZC and Y ′

H .
To map an orientation from the hand to the robotic EE,

we first define the hand’s default orientation as the one when
the three principal axes ofXHYHZH are parallel with that of
XCYCZC (e.g., XH = −XC , YH = −ZC , and ZH = −YC ).
Similarly, the robotic EE’s default orientation is defined
as the one when the three principal axes of XEYEZE are
parallel with that of XRYRZR (e.g., XE = −XR, YE =
−ZR, and ZE = −YR). Subsequently, orientation mapping
can be formulated as

PRc = PRd + (P
H
c − PHd ), (19)

where superscript R and H represent the robot and the
hand, respectively; subscript c and d indicate the current and
default orientations, respectively.

6. Conclusion
This paper proposes a Prior-knowledgeAware andMesh-

Supervised Network (PAMSNet) to deal with depth ambigu-
ity and improve feasibility for 3D hand pose estimation from
single RGB images. We find fusing 2D poses and texture
features of the hand can obtain competitive results with other
methods, with better interpretability from a novel perspec-
tive inspired by cognitive psychology. Mesh supervision
in parallel can complement direct pose estimation without
paying a price at the inference stage. Extending the canonical
21-joint hand skeleton to a 128-joint one provides approx-
imately mask-aware spatial attention to extract features of
interest at little cost. Prior-related loss items are beneficial to
generating more accurate and feasible hand poses. In total,
PAMSNet is comparable to or outperforms other networks in
terms of accuracy and generalization ability with an efficient
architecture.
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