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Abstract—Human gait parameters reveal a lot about physical
and psychological well-being. In addition, gait impairments
significantly affect daily life activities and hamper the locomotive
freedom of people with neurological or musculoskeletal disorders.
However, there is still a need for a portable, user-friendly, cost-
effective gait characterization device. Therefore, in this study, a
feature engineering-based portable gait characterization module
is proposed, and a shank-mounted inertial measurement unit
(IMU) is utilized for gait phases and event detection. The
efficiency of the developed module is estimated on ten healthy
subjects for plain terrain walking. A force sensing resistor (FSR)
sensorized instrumented insole has been utilised as a reference
system to validate the results estimated using the developed
module. The performance is estimated with three different
classifiers, support vector machine (SVM), K-nearest neighbor
(KNN), and linear discriminant analysis (LDA). For gait event
identifications, the average classification accuracies depicted by
SVM, LDA, and KNN classifiers are 95.69±5.23%, 96.64±5.02%,
and 93.63±4.84% (p− value < 0.05), respectively. Furthermore,
the confusion matrix demonstrated the insight illustration of
predicted and misclassified events for individual classifiers. In
summary, the gait events and gait temporal parameters are
reliably estimated using a single IMU with SVM or LDA classifier
(p − value > 0.05). Additionally, the efficacy of the proposed
model for sensor location and subject variability has been
evaluated. The performance of LDA and SVM classifier for gait
phase prediction has been found invariant (p − value > 0.05)
towards sensor location and subject variability.

Index Terms—Classification, Embedded system, Gait charac-
terization, Gait-phase prediction, Inertial measurement unit.

I. INTRODUCTION

GAIT analysis plays a vital role in assessing walking
activity and irregularity in human walking patterns.

Variation in walking patterns provides valuable information
about abnormal psychological and physical conditions. Gait
analysis finds applications across sports, clinical health di-
agnostics, and rehabilitation, among others [1]. In clinical
health diagnostics, Several approaches have been suggested
in the literature., such as a method to perform ambulation
monitoring for patients with Parkinson’s disease (PD) has
been developed and feature engineering techniques have been
extensively utilised to discriminate between people with PD
and healthy individuals automatically [2]–[7]. Furthermore,
an investigation was conducted to develop a technique for
differentiating between patients suffering from medial knee
osteoarthritis and asymptomatic individuals using gyroscopes
and accelerometers [8], [9]. These methods help patients im-
prove their health conditions and quality of life. Similarly, gait
analysis can be used in rehabilitation to monitor the patient’s
recovery from any movement disorder. In medicine and health-
care, gait analysis is an assistive tool and fundamental method

to characterize human gait, which enhanced the interest of
clinicians and researchers. In sports activities, gait analysis has
been implemented to recognize the indiscretions and faults in
the athlete’s performances in various sports events, such as
running and swimming, so that they can analyze and improve
[10], [11]. These gait analyses can be used to understand
poor biomechanics, avoid future overuse injuries, help athletes
achieve high-level performance, and perform high running
or jumping. The moment can lead to significant injuries by
falling or tripping during running when the foot is in the mid-
swing phase. These days gait analysis is limited to laboratory-
based settings, but the reality proves that demands for real-life
portable monitoring and measurement devices are high [12].

Gait characterization can be done using various techniques,
from simple and affordable to highly advanced. For instance,
footprint recording while ground walking to identify one’s
stride is cheap and straightforward. The shoe bottom is painted
to accomplish the following so that the impression of the
footprint can be observed on the ground. O’Sullivan et al.’s
study employed standard walk tests, including the 6-minute
and 10-meter walk tests, for gait analysis [13]. The temporal
metrics, such as step and stride times, are also measured
during the ground walk using a stopwatch. Even so, this
method of determining gait is frequently employed in typical
settings, although it still has problems with scarce resources
and measurement subjectivity [13], [14]. The limitations and
challenges in the conventional environment have been resolved
with stereophotogrammetric systems [15], walk mats [16],
and wearable devices [17]–[22]. The stereophotogrammetric
system is a multi-camera motion capture system that provides
the instantaneous position of markers that can be used for gait
characterization. While these systems excel in gait character-
ization, they are hindered by their high costs, lengthy setup
process, restricted to laboratory-based settings, and operational
complexity, which arises from the specialized technical exper-
tise required for operation. Similarly, pressure mats are more
dependable and cost-effective than a stereophotogrammetric
system for measuring gait, but use is restricted to adequately
equipped laboratories and overground gait exercises. These
drawbacks motivated researchers to explore wearable and cost-
effective solutions for gait characterization.

Gait characterization can be performed using motion, force,
goniometers, and piezoelectric sensors. Thus, researchers have
started investigating the pressure sensors. The FSR have
been utilized for gait characterization, as shown in the study
conducted by Beauchet et al. [23]. FSRs placed beneath the
feet are utilized to detect gait-related occurrences like toe-
off (TO) and heel-strike (HS), enabling the measurement of
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spatiotemporal gait parameters. In the literature, researchers
presented the significance and use of multiple FSRs (2 to 32 in
number) located in different regions of the feet to characterize
the gait [24]–[26]. Multiple FSRs improve the accuracy and
precision of the measurement because it provides information
on all parts of the feet touching the ground, which helps
in detecting flat foot and gait abnormality. Nevertheless, it
increases the number of data channels that improve the hard-
ware complexity and difficulty identifying and rectifying faulty
FSRs, This troubleshooting complexity renders it impractical
for real-world application. Furthermore, few FSRs can fail to
pick up specific components of gait impairment, such as foot
eversion/inversion [27], often observe in post-stroke subjects
[28].

In prior research, significant endeavor was dedicated to
developing practical and valid alternatives to address the
constraints associated with laboratory testing, notably the time-
consuming setup and costly equipment [29], [30]. A focused
research and development technique has been proposed by
the researchers to capture the lower limb motion with the
limited expert knowledge required and without expensive
equipment [31], [32]. The Inertial Measurement Units (IMU)
appeared as a promising device to authorize unobstructed,
affordable, daily life detection of gait in a wide abundance of
cohabitation [33], ranging from neurological diseases such as
somnambulism (sleepwalking), and Parkinson’s [34] to Stroke
[35]. One benefit of IMU-based gait assessment is the ability to
measure walking responses to environmental changes, thereby
improving the ecological validity of the testing process [36].
IMU sensor poses several challenges due to drift problem and
inherent sensor noise. These challenges limited the widespread
use of IMU-based systems for pervasive healthcare [37], [38].
However, many literatures present reliable and efficient ways
to estimate gait parameters using feature engineering tech-
niques. In this context, features measured from the IMU signal
are utilized for spatiotemporal gait parameters prediction [39],
[40]. The study conducted by Hannink et al. utilized deep
learning to calculate the stride length and trained the model
using a freely available dataset of 101 geriatric patients [41].
The research did not prioritize the assessment of temporal gait
metrics. Moreover, deep neural networks are not well suited
for real-time embedded applications.

In this study, a single IMU sensor-based system has been
developed and its performance validated against an FSR sensor
insole [24], [25]. In addition, temporal gait events and phase
estimation approaches have been proposed using feature engi-
neering techniques. This approach is fully data-driven and does
not depend on assumptions or theoretical models. Furthermore,
the gait events (TO, HS) estimation has been performed using
gait phase information (swing and stance phases) that is
mainly calculated using an IMU sensor signal. The primary
objectives of this study are to offer a user-friendly, affordable,
machine-learning (ML)-driven, and wearable system for gait
characterization. Moreover, the conventional machine learning
approach made it more suitable for embedded implementation.

Fig. 1. Gait Phases and Gait Events of a Complete Gait Cycle.

II. MATERIALS AND METHODS

A. Gait Temporal Characterization

Human gait is the linear advancement of the human body’s
movement generated by synchronized, rotated movements of
body parts. Everyone has their gait pattern. The fundamental
purpose of gait is to support the HAT (head, arms, trunk),
balance the body, and maintain an upright posture. Gait is
defined as a balanced, alternating, and cadenced movement of
lower limbs that results in the forward progression of the body.
A stride represents the single gait cycle (GC), which begins
with HSs and ends when the next hHSs the ground of the same
leg. The single GC contains a 60% stance phase (STP) and
a 40% swing phase (SWP) [33]. The stance phase contains
subevents such as HS, heel-lift (HL), mid-stance (MS), flat-
foot (FF), and TO. Further, the swing phase is divided into
the initial, mid, and terminal swings, as shown in Fig. 1.

Gait temporal parameters include stride time, step time,
stance time, and swing time. Furthermore, these parameters
are used in identifying gait impairment, assessing, and treat-
ing individuals with pathological situations that affect their
walking, such as Parkinson’s, Stroke, and sleepwalking. Any
movement disorder affects the walking of the patients, which
could be identified using these parameters. The GC can be
subdivided into two phases: one STP and a second SWP. HS
of any leg represents the starting of the STP, however, the SWP
initiates when TO happens for the same leg. When the TO and
HS of the GC are detected then all spatiotemporal parameters
are measured. Brief formulas to measure the temporal gait
parameters are explained below [42].

Stride Time: It is the duration between two consecutive HSs
of same foot and is calculated using the time between HS(i)
of one leg and the next HS(i+1) of the same leg.

Sride(i) = HS(i+ 1)−HS(i). (1)

Stance Period: It is the time duration between HS and TO
of the same leg and calculated using the time between TO(i)
and HS(i) of the same leg.

Stance(i) = TO(i)−HS(i). (2)

Swing Period: This refers to the period during which
the foot is completely lifted off the ground, calculated by
measuring the time between TO(i) and HS(i+1).

Swing(i) = HS(i+ 1)− TO(i). (3)

Step Time: This is the duration between two consecutive
foot contacts with the ground of the opposing foot. It is
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Fig. 2. Developed Hardware Module. (1) Microcontroller; (2) IMU; (3) SD
Card; (4) Li-ion battery; (5) battery charging module; (6) DC-DC voltage
regulator; (7) FSR Sensor; (8) Insole.

calculated using the time between left leg HS(i) and Right
leg HS(i).

StepT ime(i) = HSright(i)−HSleft(i). (4)

B. Developed Hardware System

The proposed module consists of four submodules: one 6-
DoF IMU sensor, a power supply, instrumented insole with
FSR sensors, and the microcontroller, as shown in Fig. 2. The
microcontroller has 4K EEPROM (emulated) memory, 1024K
RAM, 7936K Flash, ARM Cortex-M7 at 600MHz, 8 serial,
3 SPI, 3 I2C ports, 18 analog input pins, 35 PWM output
pins, 55 digital input/output pins, SD Card port, and RTC for
date/time. The Arduino IDE software, supplemented with the
Teensyduino add-on, serves as the programming environment
for this microcontroller. The insole consisted of four FSR
sensors [23], one at the toe, one at the heel, and two at the
metatarsal region of the foot. The IMU sensor is linked to
the microcontroller’s Inter-Integrated Circuit (I2C) digital pins.
This IMU unit measures a three-axis gyroscope (Gyx, Gyy,
and Gyz) with a three-axis accelerometer (Accx, Accy, Accz)
to form a standalone six-axis unit. The IMU sensor is mounted
in the main module, as depicted in Fig. 2. To perform the
data acquisition and detect gait walking patterns, a module is
affixed to the shank area of the lower limb, positioned above
the ankle. The power consumption when running at full speed
of 600 MHz, 100 mA current, and runs on 1.25 V. The battery
used has a capacity of 1000 mAh, so the total duration it can
run for (1000mAh/100mA) is 10 hours. The output signals
from FSR and IMU had a sampling frequency of 100 Hz.
Simultaneously, these signals were stored on the data storage
module (SD card) in text file.

C. Experimental Setup and Data Acquisition

The developed hardware was used to acquire the signal
for walking activity which was further utilized for machine
learning model development and gait analysis. A total of
ten participants, without any neuromuscular and gait disorder
(average height 176.6±6.94 cm, weight 73.2±5.07 kg) aged

Fig. 3. Experimental Setup and Wearable Device. (A) Participant; (B) Walking
Path; (C) Battery Module; (D) Central Module With IMU; (E) Teensy 4.1
Microcontroller with SD Card; (F) IMU Sensor; (G) FSR Sensor; (H) Insole.

between 20 to 40 years, voluntarily participated in the experi-
mental sessions. The Indian Institute of Technology (IIT) Delhi
Ethics Committee granted approval for the proposed research
(Ref no: 2021/P015). The subjects were asked to give written
consent before the experiment. The signals acquired during
the experiment were purely non-invasive. The signals were
acquired using the developed sensor module, which consists
of an FSR sensor and an IMU sensor. The sensor module
developed was affixed to the shank area of the participants’
right foot, specifically at the ankle, as shown in Fig. 3 [43].

The wearable device is sized 7.5 cm x 5.5 cm x 2.5 cm.
The inertial sensor is oriented so that the x-axis aligns with
the walking direction. The complete experimental setup is
depicted in Fig. 3. The laboratory featured a straight path
measuring 10 meters in length and 0.8 meters in width, marked
with one-sided black tape.

In the experiment, the participants were asked to walk at a
self-paced on the experiment pathway. For each subject, a total
of ten trials were recorded, further, the subjects were instructed
to flex his/her knee with full range of motion, followed by
foot tapping, at the start and end of each trial. It was used to
synchronize the IMU and FSR signals and to separate the gait
trials. The collected data during the experiment was stored in
the SD card module of the main system

D. Signal Processing

All the signal processing was implemented with MATLAB
R2021b, on a computer with Windows 10, an Intel® Core™
i9-10900K CPU @ 3.70GHz, and 128 GB RAM. The acquired
FSR and IMU signal, stored in an SD card, and data was
imported to the PC for further analysis. Fig. 4 shows the
normalized raw signals of IMU and FSR sensors (heel and
toe).

1) Gait Phase (GP) and Gait Events (GE) Detection using
FSR: The signal of two FSR sensors (Heel and Toe) was
utilized to estimate GPs (STP and SWP), and GEs (HS and
TO) and to estimate the gait temporal parameters [24], [25].
Moreover, these values also serve as a reference to estimate the
performance of the developed IMU-based gait characterization
model. First of all, the walking trials were separated using the
IMU sensor signal. Fig. 4 (a, b) shows the recorded IMU signal
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Fig. 4. Normalized raw signals of IMU and FSR sensor ((a-b) X-axis: Black,
Y-axis: Red, Z-axis: Blue, (c) Heel FSR: Black dotted and Toe FSR: Red
dotted).

of subject 1. As mentioned earlier, the subjects were asked to
flex his/her instrumented leg’s knee twice at the start and end
of each trial. These events are distinctively identified by the
z-axis gyroscope (Gyz) signal; hence it was used to separate
the individual trials. Further, for every trial, TO and HS events
have been identified using the FSR dataset.

Fig. 5 and Fig. 6 show the flow chart and algorithm to detect
the GEs and GPs from the FSR signal. At every instance, the
designed algorithm looked for the knee flex event (annotating
the start of the trial) as soon as it was detected, the algorithm
checked for the HS and subsequently for the TO event or the
next knee flex event (annotating the end of the trial). The TO
and HS events detected in between the trials were used to
estimate the gait phase and gait temporal parameters. These
temporal gait parameters and gait phases served as reference
values for IMU-based model validation.

2) Feature Extraction and Classification Algorithm: Fig. 7
illustrates a block diagram representing the signal processing
pipeline employed in the design of the gait characterization
module utilizing the IMU signal. All the signals were imported
from the SD card to the computer. During the preprocessing
stage, the IMU signal from all six degrees of freedom was
filtered using a zero-lag, fourth-order Butterworth bandpass
filter, with a cutoff frequency range of 0.5 to 10 Hz.

Moreover, filtered data was normalized through the min-
max normalization method, which ensures consistency and
comparability across different datasets [44]. Additionally, the
precise extraction trials from recorded data are a crucial step
for the performance of the training model. The trials were
extracted using the Gyz signal generated from voluntary knee
flexion movement performed at the start and end of the trial.
Subsequently, an overlapped windowing algorithm is utilized
to segment all the signals (gyroscope, accelerometer) for
further processing. For the current study, a window size and
window shift of fifteen and one sample were opted, respec-
tively. Further, for each window, six-temporal features were
extracted. The extracted features were skewness, variance,

Fig. 5. Flow chart and pseudo code to detect the GEs and GPs from the FSR
signal.

root mean square, kurtosis for individual Degree of Freedom,
and correlation between each pair of Degree of Freedom of
gyroscope and accelerometer [45]. It resulted in a total of 36
features for each feature vector. The feature vector associated
with the SWP was designated as ’1’, while those belonging to
the STP were labeled as ’2’. The system’s performance was
assessed using 10-fold cross-validation. In this process, out
of ten recorded trials, one trial was reserved for testing the
classifier, while the remaining trials were utilized for training.
This cross-validation procedure was repeated until each trial
underwent testing.

Additionally, the computation of six performance indices,
including precision, accuracy, sensitivity, Matthews Correla-
tion Coefficient (MCC), Cohen’s kappa, and F1 score, provides
a multifaceted evaluation of classifier performance, allowing
for nuanced comparisons and insights into their capabilities.
The computation of multiple performance indices is crucial
in evaluating the effectiveness and reliability of classifiers
in motion analysis. Accuracy, as a fundamental measure,
indicates the overall correctness of the classifier’s predictions,
providing a broad assessment of its performance. Precision
emphasizes the ratio of true positive predictions to all positive
predictions, offering insights into the classifier’s ability to
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Fig. 6. Algorithm to estimate the gait events and phases from the FSR signal. .

avoid false positives. The sensitivity of a prediction system is
defined as the percentage of correct predictions relative to the
total number of positive instances, highlighting the classifier’s
capability to detect positive cases accurately. The F1-score
is a harmonic average of precision and sensitivity, balances
these two metrics, and provides a comprehensive evaluation
of the classifier’s overall performance. Cohen’s kappa statistic
assesses the agreement between the classifier’s predictions and
the ground truth labels, considering the possibility of random
agreement, thus offering a robust measure of classification
reliability. Whereas the MCC provides a balanced assess-
ment of classifier performance even in imbalanced datasets.
Collectively, these performance measures offer a nuanced
understanding of classifier capabilities, allowing researchers to
make informed decisions regarding their suitability for motion
analysis tasks [46].

The output stream of the detected gait phase from each
classification method was subjected to a ”postprocessing al-
gorithm” with the objective of identifying and eliminating
outliers that were embedded in larger sections that belonged
to the other class. When a cluster was less than half a window
(i.e., 7 samples or 0.07 s) and preceded and followed by a
larger, differently categorized array, the cluster was said to
be an ”outlier” (Fig. 7). The current class is ”preferred” by
the correction process, which operates consecutively. Short
clusters designated as ”swing” are changed into ”stance” if we
are in a ”stance” phase. Further, from the corrected gait phase

stream, gait events were found by detecting the transitions
from stance to swing (TO event) and swing to stance (HS
event). This post-processing algorithm improves the proposed
model performance in detecting the GPs and GEs and so as in
estimating gait temporal parameters. For the presented study,
the performance of three different classifiers, KNN, LDA, and
SVM, were evaluated and compared for the individual subject.
In addition, a machine learning toolbox in MATLAB (R2020b)
was utilized to find the optimum parameters of SVM, LDA,
and KNN. The optimum value of the hyperparameters of
different classifiers is estimated. The complete algorithm is
presented in Fig. 8.

III. RESULTS

In the presented work, the ML model has been implemented
to first evaluate the gait phases (swing, stance) and then
using the phase information, the gait events (TO, HS), and
temporal gait parameters has been estimated using single
IMU signal. The performance of three different classifiers has
been compared comprehensively for ten subjects. For each
subject, a total of ten walking trials have been recorded, and
from each walking trial, five gait cycles have been used for
dataset preparation. The gait phase detection problem has been
considered a two-class classification problem.

Table I displays the diverse evaluation metrics of the GP de-
tection model across individual subjects and all classifiers. The
% classification accuracy of the SVM classifier ranges between
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Fig. 7. Signal processing pipeline utilized for gait characterization module design using the IMU signal.

Fig. 8. Complete algorithm for temporal gait temporal parameters estimation.

80.37-99.29%, for the LDA classifier, it is between 89.63-
99.26%, and for the KNN classifier, it is found between 72.20-
98.73%. Whereas the average % classification accuracy has

been found as 95.68±5.22%, 96.64±5.02%, and 93.62±4.83%
(p − value < 0.05) for SVM, LDA, and KNN classifiers,
respectively. The proposed model performance is equally
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dependent on the correct classification of stance as well as the
swing phase. Hence, to compare the performance of classifiers
more comprehensively, precision, sensitivity, F1 score, Ckappa,
and MCC are also estimated. It will provide more insight
into the results obtained using the developed classification
model. The average % precision has been found as 96.58±4.26,
97.72±3.81, and 96.47±3.80 (p − value > 0.05) for SVM,
LDA, and KNN classifiers, respectively. The average % recall
has been reported as 97.32±3.85, 97.45±3.99, and 94.31±4.25
(p − value < 0.05) for SVM, LDA, and KNN classifiers,
respectively. Further, by analyzing the performance of the
classifier in view of sensitivity and recall more closely F1 score
has been estimated. The average % F1 score has been found as
96.91±3.78, 97.54±3.71, and 95.32±3.61 (p − value < 0.05)
for SVM, LDA, and KNN classifiers, respectively.

The sensitivity and F1 score, all the evaluation metrics, have
been found satisfactory for all the compared classifiers. The
human GC consists of 60-70% of the STP and 40-30% of the
SWP. There exists slight data imbalance distribution in the
dataset. Hence, for all the compared classifiers Ckappa, and
MCC have been estimated. For all the compared classifiers,
the average Ckappa has been found to be greater than 86.
Moreover, the average % MCC has been found as 91.07±8.92,
93.29±8.36, and 86.82±7.31 (p − value < 0.05) for SVM,
LDA, and KNN classifiers, respectively. The LDA classifier
demonstrates the highest performance among all classifiers,
while the KNN exhibits the lowest performance across all
performance measures compared. Therefore, when it comes
to classifying phases, the LDA classifier is a more favor-
able choice compared to the SVM and KNN classifiers.

Fig. 9 depicts the confusion matrix of all three classifiers
for gait phase classification. For SVM and LDA classifiers,
the misclassification instances for both the phases (stance and
swing) have been found to be at par for SVM and LDA
classifiers. However, for the KNN classifier, the misclassi-
fication instances for the swing phase have been found to
almost double as compared to the stance phase. It reflected
the suitability of LDA and SVM over the KNN classifier for
phase classification.

Fig. 10 depicts a graphical representation of the predicted
GP classes and actual GP classes for one trial of subject 1.
The dotted lines illustrate the predicted GP classes by the
respective classifier, while solid lines represent the actual GP
classes estimated by FSR sensors. It has been observed from
the figure that in phase classification, two types of error can
occur, outlier type (red patch) and continuous type (yellow
patch). The first type of error, the outlier type, can be well
eliminated during the postprocessing and will have no adverse
effect on the final performance of the system. However, the
second type of error, the continuous type, cannot be handled
by postprocessing and remains in the system, which further
reduces the performance of the system while estimating the
gait temporal parameters.

Table II presents the average temporal gait parameters es-
timated from FSR sensors (actual value) and predicted values
from the outcome of different classifiers. SVM and LDA clas-
sifiers estimated the temporal gait parameters more accurately
as compared to KNN classifiers. Moreover, the variation in

Fig. 9. Confusion matrix of all three classifiers for phase classification.

Fig. 10. Graphical representation of the predicted gait phase classes and
actual gait phase classes for one trial of subject 1. (Red patch: Outlier type
error, yellow patch: continuous error).

estimated parameters has been found to be minimum for the
LDA classifier and maximum for the KNN classifier.

Further, to gauge the resilience of the proposed model,
its performance towards the subject invariability and sensor
location invariability has been evaluated. To evaluate the
subject variability, the proposed model performance has been
evaluated for the naive subject. Fig. 11 depicts the method-
ology utilized for cross-subject performance estimation. The
classifier has been trained for the dataset of all the subjects,
excluding the data of the subject to be tested. Fig. 12 shows
the % classification accuracy of all the classifiers for gait
phase detection. The performance of the KNN classifier has
been significantly reduced by 3.03%, it came down to 90.78 ±
6.05% from 93.62 ± 4.83% (p− value < 0.05). Whereas, for
SVM, it has been reduced by 2.30% and estimated as 93.48
± 6.84% (p− value > 0.05). The best performance is shown
by the LDA classifier as 95.52 ± 5.18%. with a reduction of
only 1.15% (p− value > 0.05).

Further,the proposed model performance for different sensor
locations has been estimated for its robustness towards sensor
location variability. Fig. 13 depicts the different sensor loca-
tions used for signal acquisition. Initially, the data acquisition
of ten subjects was done by keeping the sensor at location-
1 (just above the ankle). However, to further test the sensor
location variability on model performance, the data has also
been acquired by positioning the sensor at location 2 (in the
middle of the shank) and location 3 (just below the knee)
separately. The classifiers have been trained with the dataset
of location-1 and tested for datasets of both location-2 and
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TABLE I
PERFORMANCE OF DIFFERENT CLASSIFIERS FOR GAIT PHASE DETECTION

SVM
Subject No. Accuracy Precision Sensitivity F1 score Ckappa MCC
S1 91.37 ± 18.14 93.27 ± 12.30 94.36 ± 14.46 93.71 ± 13.21 87.34 ± 19.96 89.07 ± 15.75
S2 97.61 ± 3.44 97.12 ± 5.05 99.57 ± 0.88 98.26 ± 2.64 94.28 ± 7.59 94.66 ± 6.92
S3 98.82 ± 2.11 99.26 ± 1.03 99.23 ± 1.82 99.24 ± 1.29 96.44 ± 7.15 96.49 ± 7.06
S4 98.11 ± 2.55 98.06 ± 3.10 99.23 ± 1.21 98.62 ± 1.87 95.66 ± 5.85 95.78 ± 5.59
S5 97.93 ± 2.69 98.66 ± 0.88 98.53 ± 3.57 98.56 ± 1.88 94.89 ± 6.54 95.09 ± 6.06
S6 97.92 ± 1.88 97.81 ± 2.84 99.23 ± 1.15 98.49 ± 1.39 95.17 ± 4.28 95.33 ± 4.04
S7 98.19 ± 1.67 99.08 ± 1.22 98.31 ± 2.02 98.68 ± 1.23 95.79 ± 3.83 95.86 ± 3.77
S8 80.37 ± 14.88 85.68 ± 11.12 86.63 ± 11.18 86.08 ± 10.80 55.65 ± 29.02 56.34 ± 28.86
S9 97.29 ± 3.51 97.68 ± 3.82 98.47 ± 1.44 98.04 ± 2.49 93.64 ± 8.39 93.76 ± 8.15
S10 99.29 ± 1.39 99.24 ± 1.31 99.71 ± 0.88 99.47 ± 1.07 98.40 ± 3.04 98.41 ± 3.04

LDA
Subject No. Accuracy Precision Sensitivity F1 score Ckappa MCC
S1 91.24 ± 20.60 93.74 ± 14.01 93.13 ± 17.61 93.30 ± 15.90 89.12 ± 19.36 91.29 ± 13.58
S2 96.68 ± 4.03 96.24 ± 5.41 98.83 ± 1.86 97.44 ± 3.20 92.74 ± 8.58 93.04 ± 8.13
S3 99.26 ± 1.99 99.67 ± 0.69 99.42 ± 1.75 99.54 ± 1.21 97.58 ± 6.67 97.62 ± 6.55
S4 98.42 ± 2.15 98.53 ± 2.60 99.23 ± 1.37 98.86 ± 1.52 96.29 ± 5.18 96.42 ± 4.91
S5 99.12 ± 2.05 99.75 ± 47 99.09 ± 2.74 99.40 ± 1.41 97.77 ± 5.12 97.90 ± 4.75
S6 98.91 ± 1.18 99.42 ± 0.76 99.02 ± 1.40 99.22 ± 0.82 97.42 ± 2.97 97.46 ± 2.91
S7 98.76 ± 1.76 99.54 ± 0.87 98.66 ± 2.06 99.09 ± 1.29 97.15 ± 4.06 97.20 ± 3.99
S8 89.63 ± 9.65 94.09 ± 7.35 91.37 ± 7.21 92.66 ± 6.94 74.81 ± 22.96 75.13 ± 23.04
S9 96.01 ± 4.57 96.86 ± 5.09 97.53 ± 1.48 97.15 ± 3.24 90.52 ± 10.89 90.72 ± 10.57
S10 98.36 ± 2.38 99.37 ± 0.90 98.29 ± 2.46 98.82 ± 1.66 96.13 ± 5.34 96.18 ± 5.25

KNN
Subject No. Accuracy Precision Sensitivity F1 score Ckappa MCC
S1 87.97 ± 18.13 92.11 ± 12.61 90.35 ± 14.89 91.11 ± 13.67 79.87 ± 17.23 81.75 ± 12.70
S2 98.25 ± 2.62 98.71 ± 2.77 98.83 ± 1.33 98.75 ± 1.87 95.84 ± 6.26 95.91 ± 6.13
S3 97.62 ± 2.77 98.97 ± 1.03 97.87 ± 2.79 98.40 ± 1.79 93.47 ± 8.38 93.61 ± 8.11
S4 96.09 ± 3.27 98.39 ± 3.13 95.79 ± 2.22 97.06 ± 2.51 91.21 ± 7.23 91.33 ± 7.24
S5 96.10 ± 4.05 98.82 ± 0.89 95.78 ± 5.15 97.21 ± 2.94 90.72 ± 9.23 91.12 ± 8.35
S6 94.53 ± 1.67 97.71 ± 3.34 94.39 ± 3.0 95.93 ± 1.29 87.57 ± 3.65 88.05 ± 3.35
S7 97.41 ± 1.23 98.74 ± 1.89 97.58 ± 1.28 98.14 ± 0.89 93.82 ± 2.96 93.94 ± 2.90
S8 72.20 ± 11.97 82.96 ± 10.15 76.50 ± 8.89 79.54 ± 9.18 40.58 ± 18.51 41.41 ± 18.34
S9 97.38 ± 1.51 98.70 ± 1.29 97.50 ± 1.84 98.09 ± 1.08 93.94 ± 3.56 94.02 ± 3.50
S10 98.73 ± 1.17 99.60 ± 0.90 98.54 ± 1.19 99.06 ± 0.91 97.04 ± 2.52 97.07 ± 2.51

TABLE II
AVERAGE TEMPORAL GAIT PARAMETERS

Gait Pa-
rameters

Actual
(FSR)

SVM LDA KNN

Stride
Time (sec)

0.87 ± 0.11 0.88 ± 0.12 0.88 ± 0.10 0.89 ± 0.09

Stance
Time (sec)

0.62 ± 0.02 0.62 ± 0.03 0.62 ± 0.02 0.63 ± 0.08

Swing
Time (sec)

0.26 ± 0.04 0.26 ±0.04 0.26 ± 0.05 0.27 ± 0.02

Step Time
(sec)

0.43 ± 0.05 0.43 ± 0.05 0.44 ± 0.05 0.44 ± 0.04

location-3 individually. Fig. 14 shows the % classification
accuracy of classifiers when the classifier has been trained with
a dataset of sensors at location-1 and tested with the dataset
of sensors at location-1, location-2, and location-3 separately.
The performance of SVM and LDA classifiers has been found
consistent for all sensor locations (p − value > 0.05). How-
ever, for the KNN classifier, a slight reduction in performance
has been observed (p− value < 0.05)

Table III presents a comparison of existing techniques
and the proposed model in this study. The proposed model
performance has been found to be better over all the compared
performance indices. Moreover, the proposed model perfor-
mance has also been found to be invariant to the different

TABLE III
COMPARISON OF THE PROPOSED METHOD WITH OTHER EXISTING

METHODS

Authors Method Accuracy Precision Recall F1-
Score

Zhang et al.
[47]

SVM 87.87% 94.96% 90.74% 91.53%

Attal et al.
[48]

MRHMM 84.64% 85.00% 84.05% 84.38%

Liu et al.
[49]

HMM 91.88% 91.58% 90.50% 90.95%

Tiwari et al.
[50]

CNN 83.45% - - -

Liu et al.
[51]

LMM 96.00% - - -

Panahandeh
et al. [52]

HMM 95.00% - - -

Dehzangi et
al. [53]

CNN 91% - - -

Gadaleta et
al. [54]

CNN 80% - - -

Rampp et al.
[55]

LSTM 90% - - -

Proposed
Method

LDA 96.64% 97.72% 97.45% 97.54%

sensor placement locations, which is not the case with existing
techniques.
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Fig. 11. Methodology for cross-subject performance estimation (Gray box depicts the data used to test the classifier).

Fig. 12. Subject-specific and cross-subject performance of classifiers for gait
phase classification.

IV. DISCUSSION

The gait phase, gait event, and its temporal information play
a very vital role in rehabilitation, predicting neuromuscular
disorder, sleep disorder, exoskeleton, and prosthesis control.

Fig. 13. Different sensor placement locations.

However, the existing methods are expensive, highly depen-
dent on a controlled environment, and require a higher number
of sensors. The primary contribution of this study was to
devise a portable, cost-effective system utilizing a single IMU
sensor and ML for gait parameter estimation. This system aims
to detect gait phases, gait events, and estimate gait temporal
parameters. The developed hardware module consists of 6 DoF
single-IMU sensors, a microcontroller, an SD card interface,
and a power supply module. Moreover, a modular insole with
four FSR sensors has also been designed and interfaced with
the developed module. The signal recorded with the insole
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Fig. 14. Classifier performance trained with data of sensor at location-1 and
tested with different sensor locations.

has been used to test and validate the performance of the
IMU-based system regarding the GP, GE, and gait temporal
parameter estimation. The developed hardware is portable,
user-friendly, easy to wear, position invariant, calibration-free,
suitable for outdoor use, and consumes 100 mA current when
running at full speed of 600 MHz and operates on 1.25 V.

The overall study was conducted on ten participants with
their self-paced walking speed. A ML approach has been
proposed to continuously predict the gait phase, and gait
events, and evaluate temporal gait parameters. Moreover, a
postprocessing strategy has also been proposed and validated
to filter out the gait phase outliers from the classification
results. To validate the efficacy of the proposed method, the
performance of three different classifiers has been compared
based on six performance indices. The continuous prediction
feature has been incorporated into the developed model by im-
plementing an overlapping windowing technique which makes
it more suitable for real-time applications. Fig. 15 illustrates
the overlapping windowing technique with its time complexity.
As shown in Figure, W1, W2, and W3 are successive windows.
For each window, the classification decision (D1, D2, and D3)
is made PT seconds later, where PT is the processing time,
including the time taken for the feature vector preparation
and decision-making by the classifier. The window length
specifies the quantity of data utilized for feature extraction
and classification, resulting in a single decision. The step
size of the sliding window WS controls the response time of
the system between two decisions. Moreover, the processing
time PT of the system should be less than or equal to the
step size of the sliding window to fully utilize the computing
capacity of the developed system. In this study, the window
length and window shift has been kept as 15 samples (150
ms) and 1 sample (10 ms), respectively. So, in faithful real-
time implementation, the processing time should be less than
or equal to 10 ms. The average processing time for SVM,
LDA, and KNN classifiers are found to be 0.0046±0.0232
sec, 0.0023±0.0046 sec, and 0.0044±0.0300 sec respectively.
The time delay generated due to the processing time is quite

Fig. 15. Continuous overlapping windowing.

low hence it does not impact the decisions of the proposed
system. Here, to predict the GP, the signal of only a single IMU
sensor has been utilized, which eliminates the synchronization
issue related to multiple sensors. For each window of the IMU
signal, time domain features have been estimated and concate-
nated to prepare the feature vector. The proposed methodology
is suitable for real-time embedded implementation as it utilizes
the continuous overlapping windowing technique, single IMU
sensor, and time domain features.

The proposed GE detection methodology utilized the GP
classification model to predict the GE, i.e., first, the gait phase
has been predicted, and then the gait events are estimated.
Further, there are two types of possible errors that have been
observed in the gait phase classification, the outlier type,
and the continuous type, as shown in Figure 10. A postpro-
cessing technique has also been proposed and implemented
to remove the outlier type error in gait phase detection.
In the current study, we have observed seven continuous
gait phase classification results. However, it can be tuned
by the developer to achieve the best results. The proposed
postprocessing technique makes the gait event detection more
immune to such type of error, which can also be generated
due to involuntary foot movement, foot tapping by post-stroke
patients [28], subjects suffering from Parkinson’s, or any other
neuromuscular disorders [56], [57].

The performance for gait phase prediction has been esti-
mated for SVM, LDA, and KNN classifiers. The average %
classification accuracy over ten subjects has been found to be
95.68±5.22%, 96.64±5.02%, and 93.62±4.83% (p − value <
0.05) for SVM, LDA, and KNN classifiers, respectively.
Further, to compare the performance of three classifiers, five
more performance measures (precision, sensitivity, F1 score,
Ckappa, and MCC) have been estimated and compared. The
Ckappa, and MCC performance measures justify the efficacy
of the proposed model over the imbalanced dataset. Further,
the gait temporal parameters are estimated satisfactorily. The
LDA classifier depicts the minimum variation in temporal
gait parameter estimation as compared to SVM and KNN
classifiers. Based on all estimated performance measures LDA
classifier outperformed SVM and KNN classifiers. Further-
more, the proposed model performance has been estimated
for subject variation and sensor location variation. In the case
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of subject variation estimation, the model has been tested for
a naive subject. LDA classifier depicted the minimum change
in performance, whereas KNN depicted the maximum.

The performance of the developed module suggests that
it can be used by the wide population directly without
any subject-specific training. The effect of sensor placement
location has also been estimated for three different sensor
positions. The proposed model performance has been found
to be consistent for all the sensor locations, which makes it
user-friendly and robust. However, there are some limitations
of the developed model which could be covered in future
studies. One of the limitations of the presented study is that the
proposed method is validated only on the healthy population
with their self-selected walking speed on a single type of
terrain. In the next phase of work, the proposed method could
be implemented on an embedded system, and its long-term
continuous performance could be evaluated over a variety of
populations in an unconstrained environment.

V. CONCLUSION

Human gait characterization helps in the treatment and
rehabilitation of people with movement/neurodevelopmental
disorders. Early assessment of the problem can help in di-
agnosing/predicting neuromotor disorders at primary stages.
However, the current approach for diagnosis is confined to a
sophisticated and controlled instrumentation laboratory, which
is out of the reach for a large population. The gait character-
ization module should be user-friendly, cost-effective, robust,
and efficient. In the present research work, a machine learning-
based wearable sensor module has been developed, that con-
sists of only a single IMU sensor. The LDA classifier showed
the best classification accuracy for gait phase prediction as
96.64±5.02% (p − value < 0.05), in comparison to SVM
and KNN classifiers. Further, a post-processing algorithm has
been proposed to estimate the gait events from the predicted
gait phases. The temporal gait parameters have also been
estimated from the series of gait events. Stance and swing
time measured using the LDA classifier have been found very
close to reference values (p − value > 0.05) as 0.62 ± 0.02
and 0.26 ± 0.05 (sec), respectively. Moreover, the robustness of
the proposed model is validated with changing sensor location
as well as recruiting naive subjects to predict the gait phase
accurately. The results obtained from this study will help the
therapist in the treatment, management and rehabilitation of
gait associated neurological disorders. In future, an integrated
embedded system powered by deep learning models will be
developed for the on-site and off-site implementation of the
technology for the telemedicine-based diagnosis, rehabilitation
and management of movement related disorders.
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[33] F. A. Garcia, J. C. Pérez-Ibarra, M. H. Terra, and A. A. Siqueira,
“Adaptive algorithm for gait segmentation using a single imu in the
thigh pocket,” IEEE Sensors Journal, vol. 22, no. 13, pp. 13 251–13 261,
2022.

[34] K. Ren, Z. Chen, Y. Ling, and J. Zhao, “Recognition of freezing of
gait in parkinson’s disease based on combined wearable sensors,” BMC
neurology, vol. 22, no. 1, pp. 1–13, 2022.

[35] C. Tunca, N. Pehlivan, N. Ak, B. Arnrich, G. Salur, and C. Ersoy,
“Inertial sensor-based robust gait analysis in non-hospital settings for
neurological disorders,” Sensors, vol. 17, no. 4, p. 825, 2017.

[36] I. H. Lopez-Nava and A. Munoz-Melendez, “Wearable inertial sensors
for human motion analysis: A review,” IEEE Sensors Journal, vol. 16,
no. 22, pp. 7821–7834, 2016.

[37] L.-F. Shi, H. Liu, G.-X. Liu, and F. Zheng, “Body topology recognition
and gait detection algorithms with nine-axial immu,” IEEE transactions
on instrumentation and measurement, vol. 69, no. 3, pp. 721–728, 2019.

[38] H. Zhang, Y. Guo, and D. Zanotto, “Accurate ambulatory gait analysis
in walking and running using machine learning models,” IEEE Transac-
tions on Neural Systems and Rehabilitation Engineering, vol. 28, no. 1,
pp. 191–202, 2019.

[39] C.-W. Tan and S. Park, “Design of accelerometer-based inertial naviga-
tion systems,” IEEE Transactions on Instrumentation and Measurement,
vol. 54, no. 6, pp. 2520–2530, 2005.

[40] A. M. Sabatini, C. Martelloni, S. Scapellato, and F. Cavallo, “Assessment
of walking features from foot inertial sensing,” IEEE Transactions on
biomedical engineering, vol. 52, no. 3, pp. 486–494, 2005.

[41] J. Hannink, T. Kautz, C. F. Pasluosta, J. Barth, S. Schülein, K.-
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